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We investigate the influence of efficacy of synaptic interaction on firing synchronization in excitatory
neuronal networks. We find spike death phenomena: namely, the state of neurons transits from the limit cycle
to a fixed point or transient state. The phenomena occur under the perturbation of an excitatory synaptic
interaction, which has a high efficacy. We show that the decrease of synaptic current results in spike death
through depressing the feedback of the sodium ionic current. In the networks with the spike death property the
degree of synchronization is lower and insensitive to the heterogeneity of neurons. The mechanism of the
influence is that the transition of the neuron state disrupts the adjustment of the rhythm of the neurons
oscillation and prevents a further increase of the firing synchronization.
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I. INTRODUCTION

Synchronization of neural activity appears in different
parts of the mammalian cerebral cortex �1� and underlies
different neural processes in both normal and anomalous
brain functions �2�. It has been suggested that synchroniza-
tion plays a vital role in information processing in the brain:
e.g., processing information from different sensory systems
to form a coherent and unified perception of the external
world �1–6�. On the other hand, synchronization has been
detected in pathological conditions such as Parkinson’s dis-
ease �7,8�. And epileptic seizures have long been considered
to result from excessive synchronized brain activity �9�, al-
though some recent studies suggest that this picture may be
an oversimplification �10,11�. Therefore understanding the
mechanisms of synchronization may be a critical step in elu-
cidating how neural systems work �11�. It has stimulated a
great deal of theoretical and numerical works, such as studies
on the effects of the topological properties of underlying net-
works �12–15� and the dynamical properties of synaptic cou-
pling �16,17�.

It was recently shown that the response time of synaptic
couplings influences the stability of synchronized oscilla-
tions in the nonlocally coupled Hodgkin-Huxley �HH� equa-
tions �16�. If the response time of synaptic coupling is
slower, synchronized activity of the systems is instable for
excitatory coupling. However, the underlying dynamical
mechanism of the influence is not clear. In experimental
studies �18�, it has been suggested that the generation of
prolonged epileptiform neuronal synchronization is favored
by the lower efficacy of synaptic transmission. Numerical
studies �19� in a detailed computational model revealed that
seizurelike activity occurs when the excitatory synapses are
weakened, and the results were confirmed experimentally in
mouse neocortical slices. According to the commonly ac-
cepted assumption that synchronization of neuronal activity

underlies seizures, the dynamical mechanism of synchroni-
zation may be useful for understanding the way the biologi-
cal neural system works.

In this work, we numerically investigate the dynamical
mechanism underlying the influence of synaptic efficacy on
firing synchronization in HH neuron networks. To do this, we
first studied the dynamics of the response of HH neurons to
excitatory synaptic current. When the efficacy of the synapse
is low—namely, strength is weak and duration is short—the
limit cycle is stable to the perturbation of the synaptic cur-
rent. When synaptic efficacy is high, synaptic current can
induce the transition of the neurons from the limit cycle to a
fixed point or transient state. The transition is determined by
dynamics of neuron’s ionic channel. The decrease of synap-
tic current depresses the feedback of sodium ionic current
which is responsible for the initiation of the spike. For sim-
plicity we will refer to the transitions as spike death.

In neuronal networks, the synaptic input of a neuron is the
accumulation of the currents received from all presynaptic
neurons. When the coherence of the firing time of neurons is
enhanced by an excitatory interaction, the synaptic input of
neurons transforms from a fluctuant wave form into a pulse
shape like the signal produced by one synapse. If synaptic
efficacy is high, the input signal can induce a spike death of
the neuron. Then the spike death disorders the adjustment of
the rhythm of neurons and prevents neurons from firing
spikes synchronously. In contrast, for synapses of lower ef-
ficacy, the duration of synaptic current is too short to induce
the spike death of neurons. Additionally, the firing synchro-
nization is different from the synchronous activity of oscil-
lators for the existence of the transitions of the neuron’s
state.

The paper is organized as follows. The HH neuron model
and the synaptic coupling are introduced in Sec. II. The re-
sponse of a HH neuron to synaptic current is investigated in
Sec. III. The influence of the dynamics of neurons on firing
synchrony is shown in Sec. IV. A discussion and conclusion
are given in Sec. V.*yhwang@lzu.edu.cn
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II. MODEL

To investigate the dynamics of a neuron under the pertur-
bation of a synaptic stimulus, we adopted a system consist-
ing of a HH neuron and a synapse. The HH neuron was
originally proposed for the giant axon in a squid �20�. It
serves as a paradigm for the spiking neuron models based on
the nonlinear conductances of ion channels. The model de-
scribes the evolution of the membrane potential V�t� and can
be written as

C
dV

dt
= Iion + Istim + Isyn, �1�

where Iion is the ionic current, Istim is the external current, and
Isyn is the synaptic current. The ionic current describes the
ion channel on the membrane and is defined as

Iion = − gNam
3h�V − ENa� − gKn4�V − EK� − gl�V − El� ,

�2�

where gNa, gK, and gl are the maximum conductances for the
sodium, potassium, and leak currents, and ENa, EK, and El are
the corresponding reversal potentials. m and h are the acti-
vation and inactivation variables of the sodium current, and n
is the activation variable of the potassium current. The gating
variables y=m,h,n satisfy the differential equation

dy�t�
dt

= �y�1 − y�t�� − �yy�t� , �3�

with the nonlinear functions �y and �y given by

�m = 0.1�V + 40�/�1 − exp�− �V + 40�/10�� , �4�

�m = 4 exp�− �V + 65�/18� , �5�

�h = 0.07 exp�− �V + 65�/20� , �6�

�h = 1/�1 + exp�− �V + 35�/10�� , �7�

�n = 0.01�V + 55�/�1 − exp�− �V + 55�/10�� , �8�

�n = 0.125 exp�− �V + 65�/80� . �9�

The parameter values are ENa=50 mV, EK=−77 mV, El=
−54.4 mV, gNa=120 mS /cm2, gK=36 mS /cm2, gl
=0.3 mS /cm2, and C=1 �F /cm2 �21,22�.

The external current Istim determines the firing rate of the
neuron. In the absence of synaptic coupling Isyn, the HH
neuron has the following bifurcation diagram as a function of
Istim: In the parameter regions Istim� I0 and Istim� I2 the fixed
point is the global attractor. For I0� Istim� I1 the neuron pos-
sesses coexisting stable attractors, the fixed point and the
limit cycle, which are separated by an unstable limit cycle.
For I1� Istim� I2 the fixed point becomes unstable. The val-
ues of the bifurcation points are I0�6.2 �A /cm2, I1
�9.8 �A /cm2, and I2�154 �A /cm2 �23�.

We adopted the synaptic current Isyn described by an �
function �22�. The �-function synapse is a phenomenological
model based on an approximate correspondence of the time
course of the wave form to physiological recordings of the

postsynaptic response �24�. The equation of the synapse is
like

Isyn�t� = − gsyn��t − tin��V�t� − Esyn� , �10�

with

��t� = �t/��exp�− t/����t� , �11�

where � is the characteristic time of the interaction, ��t� is
the Heaviside step function, and tin is the beginning time of
the synaptic interaction—i.e., the firing time of the presyn-
aptic neuron �all delays are neglected�. The synaptic effect is
traditionally classified as excitatory or inhibitory depending
on the value of Esyn. Here, we took Esyn=30 mV for excita-
tory synapses and −80 mV for inhibitory ones. Equation �11�
yields pulses with the maximum value of e−1 at t= tin+� and
with a half width of 2.45� �25�. So � characterizes the dura-
tion of the synaptic interaction. For the �-function synapse,
we equated the synaptic efficacy to the maximum synaptic
conductances gsyn and the characteristic time �. The high
efficacy means that synaptic current possesses a strong
strength and long duration.

III. SPIKE DEATH OF NEURONS

We focused on the dynamics of the system in the param-
eter region near the bifurcation point I1. First, we studied the
response of bistable neurons �I0� Istim� I1� to the excitatory
synaptic current. In simulations, firing was identified as the
membrane potential V is over 20 mV. When the neuron fired
a spike, we triggered a pulse of synaptic current into it. We
observed two types of dynamics of the response, which de-
pended on the efficacy of synapse. For a slow response time
and strong synaptic strength, the neuron transited from the
limit cycle to the fixed point. The transition of the neuron
state is shown in Fig. 1. In Fig. 1�a� the response of the
neuron to the synaptic current is represented by the mem-
brane potential V. In the figure, the synaptic current is illus-
trated by the pulse added on the external current. One can see
that the periodic firing was eliminated after the synaptic cur-
rent was injected. The value of the membrane potential
tended to −61.15 mV through subthreshold oscillations. In
Fig. 1�b� the transition of the neuron state is shown in a
three-dimensional space �V ,h ,m�, which is a projection of
the phase space �V ,h ,m ,n�. The trajectory left the limit
cycle and was attracted to the basin of the fixed point. At
last, through a transient process, the trajectory stopped at the
fixed point, which is indicated by the dashed lines in
the figure. The fixed point was �V ,h ,m ,n�
= �−60.15,0.423,0.092,0.394� as the parameter Istim
=8.5 �A /cm2. On the other hand, for systems with a quick
response time and weak synaptic strength, the transition did
not occur and the trajectory was attracted back to the limit
cycle from a weak perturbation.

When the external signal Istim is larger than but near I1, the
neuron possesses a stable limit cycle and an unstable fixed
point. In this case there were also two types of dynamics of
response. For high synaptic efficacy, the neuron exhibited a
transient behavior when it received the synaptic current. Fig-
ure 2�a� shows that the membrane potential responded to the
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synaptic current with a transient subthreshold oscillation.
The subthreshold oscillation interrupted the periodic firing of
the neuron. In phase space the transient behavior was a mo-
tion around the unstable fixed point. This is explicitly shown
in the corresponding three-dimensional phase space
�V ,h ,m�. In Fig. 2�b� one can see that the trajectory of the
neuron left the limit cycle and transiently moved around the
unstable fixed point, which is indicated by the dashed lines.
The unstable fixed point was �V ,h ,m ,n�
= �−58.704,0.374,0.108,0.417� as the parameter Istim
=12.5 �A /cm2. On the other hand, for low synaptic efficacy,
the coupling cannot induce transient motion around the un-
stable fixed point. Like bistable neurons, the trajectory re-
turned to the limit cycle from a weak perturbation.

Figure 3 shows the boundary between the two types of
dynamics on the parameter plane gsyn vs �. For the bistable
neuron of the external current Istim=8.5 �A /cm2, the bound-
ary between the two types of dynamics is represented by
squares. Above the curve, neurons responded to synaptic cur-
rents with transitions between attractors. Inversely, the limit
cycle of neurons was stable to the perturbation. For the neu-
ron of the external current Istime=12.5 �A /cm2, the boundary
is shown by circles. It is notable that a stronger strength and
longer duration of synaptic current were needed by transi-
tions of the neuron state. Based on numerical simulations, we
obtained that the transitions of the neuron state can be in-
duced by synaptic current in the parameter region

6.2 �A /cm2� Istim�28.8 �A /cm2. Above the upper bound-
ary of the region, the transient motion around the unstable
fixed point cannot be induced by the synaptic current.

In the following, we referred to the phenomena shown in
both Figs. 1 and 2 as spike death. Different from oscillator
death which is the quenching of oscillation of coupled sys-
tems, spike death is the behavior of a single neuron. And
spike death includes both the transition between stable at-
tractors and the transient behavior.

FIG. 1. �Color online� �a� The response of bistable HH neuron to
excitatory synaptic current. The symbol I denotes the sum of the
external current Istim and the synaptic current Isyn. �b� The corre-
sponding phase portrait. The values of the parameters are �=2 ms,
gsyn=1 mS /cm2, and Istim=8.5 �A /cm2.

FIG. 2. �Color online� �a� The response of the neuron with
Istim=12.5 �A /cm2 to excitatory synaptic current. �b� The corre-
sponding phase portrait. The synaptic parameters are the same as
Fig. 1.

FIG. 3. �Color online� The dynamics diagram of minimal syn-
aptic intensity gsyn vs the characteristic time � for the neurons with
the external current Istim=8.5 �A /cm2 �squares� or Istim

=12.5 �A /cm2 �circles�.

INFLUENCE OF SYNAPTIC INTERACTION ON FIRING… PHYSICAL REVIEW E 78, 061906 �2008�

061906-3



Next we gave a qualitative interpretation of the spike
death phenomenon. Although the synaptic current consists of
a rise and a decay stage, we want to show that the decrease
of the synaptic current induces the transition of neuronal ac-
tivity. We illustrate the role of the decreased current in Fig. 4.
In the simulations, external currents linearly decreased from
20 �A /cm2 to 8.5 �A /cm2, and synaptic current was ab-
sent. The time of beginning to decrease and the different
slopes of the decrease current were chosen to represent the
distinct duration and rate of decay of the current. In Fig. 4�a�,
the activity of the neuron transited from the periodic firing to
the silent state through transient subthreshold oscillations.
The decrease of current induced the spike death of the neu-
ron. In Fig. 4�b�, the decay of the current occurred in the
refractory period of the neuron. The decreased current did
not depress the next spike. This is similar to the scenario of
a synaptic current of short duration. So spike death requires
that the decrease of current occur at the end of the refractory
period and the stage of the initiation of the next spike. In Fig.
4�c�, the external current decreased with the slope
−0.5 �A / �cm2 ms�. Comparing with Fig. 4�a�, the rate of
decrease was small. Although the current decreased at the
stage of initiating a spike, it did not depress the firing of the
neuron. Thus spike death requires that the rate of decrease of
current be large at the stage of initiating spikes.

To interpret the effect of the decrease of current on the
oscillation of neurons, we reviewed the generation of spikes.
For a fixed value of the membrane potential V, the variable y
�=m ,h ,n� approaches the value y0�V�=�y�V� / ��y�V�
+�y�V�� with the time constant �y�V�= ��y�V�+�y�V��−1. The
variable m0�V� increases with V, and the corresponding time
scale �m is smaller than �h and �n. If external current injects
into the cell and raises the membrane potential V, the con-
ductance of sodium channels, gNam

3h, increases due to in-
creasing m. Then sodium ions flow into the cell and raise the
membrane potential even further. If this positive feedback is
large enough, a spike is initiated �21�. When external current
decreases at the onset of the generation of a spike, the rise of
the membrane potential slows down. Then the increase of m
is slowed down. So positive feedback is weakened. If the
current decreases quickly, the spike of the neuron can be

depressed. Therefore, for depressing the positive feedback of
sodium ionic current, the decrease of current must occur at
the onset of the generation of spikes, and the current must
decrease at a large rate. This interpretation is consistent with
the above simulated results, that a strong strength and long
duration of synaptic current are necessary for spike death.

IV. INFLUENCE ON FIRING SYNCHRONIZATION

Next, we investigated the influence of spike death on the
firing synchronization in neuronal networks. We considered a
directed random network consisting of N nonidentical HH
neurons. The network was generated as follows: With a prob-
ability p, we connected each of the probable directed cou-
plings �such as the one from the jth neuron to the ith neu-
ron�. The network is described by an adjacency matrix �aij�,
the entry aij of which is equal to 1 when the coupling from j
to i exists and zero otherwise. In the directed network, aij

cannot be equal to aji, and the signal travels in only the
direction from j to i if aij =1 and aji=0. The signal received
by the neuron i is the accumulation of all input synaptic
currents, which is defined as

Isyn
i �t� = −

1

qi�
j=1

N

aijgsyn��t − tin
j ��Vi�t� − Esyn

ij � , �12�

where qi is the rescaled factor which equals the number of
inputting synapses of neuron i �i=1, . . . ,N�. tin

j is the latest
firing time of the presynaptic neuron j. Esyn

ij is the reverse
potential of the synapse connecting j to i.

To study the global behavior of neuronal networks we

computed the average activity V̄�t�= �1 /N��i=1
N Vi�t� of the

network. The amplitude of average activity can intuitionally
reveal the coherence of the activity of neurons, which is
defined as �12�

�2 =
1

T2 − T1
	

T1

T2

�
V̄�t��t − V̄�t��2dt , �13�

where the angular brackets denote temporal average over the
integration interval. In this work we studied the firing syn-
chrony for the reason that neuronal states may transit away
from the limit cycle and the synchronization of oscillators
will be disrupted. Here we focused on the coherence of the
firing time of neurons. We adopted the average cross corre-
lation of the firing time of neurons �26,27� to quantify the
degree of firing synchronization. The average cross correla-
tion is obtained by averaging the pair coherence Kij�	� be-
tween neurons i and j—i.e.,

K =
1

N�N − 1��i=1

N

�
j=1,j�i

N

Kij�	� . �14�

The pair coherence Kij�	� is defined as

Kij�	� =
�l=1

k X�l�Y�l�
��l=1

k X�l��l=1
k Y�l��1/2 , �15�

which is measured by the cross correlation of spike trains at
zero time lag within a time bin 	. To transform the neuronal

FIG. 4. �Color online� The change of the activity of the HH
neuron as external current decreases. The external current is re-
duced from 20 �A /cm2 to 8.5 �A /cm2 with the slop �a�
−1 �A / �cm2 ms�, �b� −2 �A / �cm2 ms�, or �c� −0.5 �A / �cm2 ms�.
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activity into a spike train, the interval T2−T1 is divided into
k bins of 	=1 ms. Then spike trains of neurons i and j are
given by X�l�=0 or 1 and Y�l�=0 or 1 �l=1, . . . ,k�, where 1
represents a spike generated in the bin and 0 otherwise.

We numerically investigated the collective activity of net-
works versus the fraction of excitatory neurons, fexc, in the
networks. In general, excitatory synapses tend to synchronize
the activity of neurons in networks. However, it was shown
that in neural systems different types of dynamics of re-
sponse of neurons to couplings produce different synchrony
properties �29�. Here we studied the influence of the new
type of response, spike death, on the formation of synchrony
as the excitatory interactions increase. In simulations, the
networks consisted of 1000 neurons and the connecting
probability was p=0.01. The synaptic conductance took the
value gsyn=1 mS /cm2. As an example, we used synapses
with the characteristic time �=2 or 1 ms to generate neuronal
networks with or without spike death, respectively. To ensure
that the neurons had nonidentical properties, the external cur-
rents Istim

i were of �8.0,12.0� �A /cm2 and were generated at
random.

In Fig. 5�a� we plotted the amplitude of average activity �
versus the fraction fexc of excitatory neurons. Squares repre-
sent the results obtained in networks with �=2 ms, and
circles represent the results with �=1 ms. In Fig. 5�b� we did
the same for the average cross correlation K. The relations
showed that the coherence of activity increases with the frac-
tion of excitatory neurons. It is notable that the networks
with �=2 ms—i.e., with the spike death property—had ob-
viously lower values of � and K than networks with �
=1 ms. So the degree of synchrony in networks with the
spike death property was obviously lower than in networks
without the property.

The difference of the degree of synchrony between two
types of networks is shown more intuitionally by the average
activity in Fig. 6. We made neurons in the networks begin-
ning to oscillate with a high degree of coherence. In simula-
tions the first firing time of neurons was randomly distributed

in �0,5� ms. When fexc=0.5, the average activity of the net-
work with �=2 ms decreased obviously and the network
changed quickly to oscillating randomly, as shown in Fig.
6�a�. In the network without the spike death property, coher-
ent oscillation �12� appeared, as shown in Fig. 6�b�. When
the fraction of excitatory neurons increased, the excitatory
interaction enhanced the average activity in the networks
both with and without the spike death property, while the
average activity in the latter was obviously larger. Further-

more, the frequency of the average activity V̄ in networks
with �=1 ms was higher than the frequency in networks with
�=2 ms.

The synchrony properties can be qualitatively explained
by spike death. In networks, if the fraction of excitatory neu-
rons is increased, the coherence of the firing time of neurons
is enhanced. Then the input synaptic current of a neuron may
transform from a fluctuating wave form into a smooth pulse.
If the pulse of the accumulated synaptic current has long
enough duration to depress the next spike, the synaptic cur-
rent may lead to spike death. Therefore the synaptic current
disorders the adjustment of the rhythm of the neuron firing
and prevents synchronization. To demonstrate this, we show
the synaptic currents and spike death events in Fig. 7. In
Figs. 7�a� and 7�b� we plot the input synaptic currents of a
neuron, which was randomly chosen in networks with fexc
=0.5 and fexc=0.8, respectively. A transformation from a
fluctuate wave form to a smooth pulse was observed. In
simulations we took the peak of subthreshold oscillations of
a neuron as a spike death event. Figure 7�c� shows the his-
togram of the frequency of spike death events—i.e., the
number of spike death events in 1 ms. The spike death
events periodically appeared with the same rhythm as the
average activity of the network. In contrast, spike death
events cannot be obtained in networks of low synaptic effi-
cacy. Thus the spike death can explain the above synchrony
property.

If network consists of identical neurons, the influence of
spike death also exists and is more remarkable. Figure 8�a�
shows the relation of K to fexc of the networks in which the
external current of all neurons was Istim=10.0 �A /cm2. One

FIG. 5. �Color online� �a� The amplitude of average activity �
versus the fraction of excitatory neurons, fexc. Squares �cycles� rep-
resent the relations in networks with �=2 ms �1 ms�. The error bars
were the standard deviation across 20 realizations. �b� The relation
between the average cross correlation K and the fraction of excita-
tory neurons, fexc.

FIG. 6. Average membrane potential of the networks with �
=2 ms �left� and �=1 ms �right�. The fraction of excitatory neurons
is fexc=0.5,0.8,1.0 from top to bottom.
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can see that the values of K of the networks with �=2 ms
�squares� were similar to Fig. 5. For networks with �=1 ms
�circles�, however, the value of K tended to 1 as fexc in-
creases. We calculated the degree of synchrony as a function
of the heterogeneity of neurons in purely excitatory net-
works. In simulations the value of external currents Istim was
distributed in the region �10.0−0.5w ,10.0+0.5w� �A /cm2.
Figure 8�b� shows the relation between K and the width w of
the parameter region of Istim. For networks with �=2 ms
�squares�, the degree of synchrony was insensitive to the
heterogeneity of neurons. In contrast, the degree of syn-
chrony in networks with �=1 ms �circles� remarkably in-
creased and tended to 1 as the heterogeneity of neurons de-
creased. For networks with �=1 ms, the relation between K
and the width w of the parameter region was fitted to the
first-order exponential decay curve. The fitted curve �dashed
line� is K=A exp�−w /B�+K0 with K0=0.362
0.005, A
=0.595
0.007, and B=1.017
0.030. The remarkable dif-
ference between the two kinds of networks shows that spike

death can effectively prevent the firing synchronization in
neuronal networks.

V. DISCUSSION AND CONCLUSION

We have used HH neuron networks to investigate the dy-
namical origin of the influence of synaptic efficacy on the
firing synchronization. A new dynamics of response of neu-
rons to coupling, spike death, was suggested as a possible
mechanism underlying the influence. When the firing time of
neurons is so coherent that synaptic currents have a pulse
wave form in excitatory networks, synaptic current induces
the transition of the neuron state from the limit cycle to a
fixed point or transient state. The transitions disrupt the ad-
justment of rhythm of the neuron oscillations and prevent
further increase of the firing synchronization.

We studied the dynamics of the HH neuron responding to
the excitatory synaptic perturbation. We numerically demon-
strated that the synapse of high efficacy—i.e., large charac-
teristic time and strong strength—induces the spike death of
the neuron. For bistable neurons, spike death means the tran-
sition from the limit cycle to a fixed point. For the neuron
with an unstable fixed point, spike death means the transition
from the limit cycle to a transient state. The transient state is
the motion around the unstable fixed point in phase space.
Spike death of neurons results from the decrease of synaptic
current, which depresses the feedback of the sodium ionic
current at the stage of initiating a spike.

We demonstrated the influence of spike death on the de-
gree of firing synchronization. In simulations we considered
the networks with or without the spike death property, which
were generated using synapses of characteristic time �=2
and 1 ms, respectively. The degree of synchrony of the
former was lower. This is consistent with results of �16�, that
synchronous state is not stable for the excitation coupling of
a slow response time. However, we also showed that for a
slow response time, the degree of synchrony increased with
the fraction of excitatory and the oscillation rate of whole
network slowed down. Our main results are that in a network
with �=2 ms, spike death events were observed. And spike
death can explain the mechanism of preventing the rise of
the degree of synchrony. Related synchrony properties were
found also in weakly coupled HH neurons �22,29�. In the
case of weak coupling, the phase of the neuron was per-
turbed by couplings, but the oscillation of the neuron was not
destroyed. In contrast, the dynamical mechanism we sug-
gested is proper for strong coupling and underlies the syn-
chrony of the interrupted oscillations. Additionally, it is no-
table that, for the existence of spike death, the firing
synchronization of neuronal networks is different from the
usual oscillator synchronization in which each oscillator is
stable to perturbations �28�.

Our work relates to that of Drover et al. �30�. In this
elegant work, using a simplified neuron model of two vari-
ables, they proposed a mechanism for slowing firing down.
They found that a slow decay synaptic variable induces a
situation where trajectory is attracted toward the unstable
fixed point of the simplified model. This is similar with the
transient behavior of the HH neuron we proposed here. How-

FIG. 7. �a� The input synaptic current of a randomly chosen
neuron from the network with �=2 ms, fexc=0.5. �b� The input
synapse current when fexc increased to 0.8. �c� The histogram of
spike death events in the network with �=2 ms, fexc=0.8.

FIG. 8. �Color online� �a� The average cross correlation K ver-
sus the fraction of excitatory neurons for the networks consisting of
identical neurons. Squares �circles� represent the relation in net-
works with �=2 ms �1 ms�. The error bars were the standard devia-
tion across 20 realizations. �b� The average cross correlation K
changes with the width w of parameter region of Istim. The dashed
line is the fitted exponential curve.
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ever, with their mechanism, synaptic excitation is strongly
synchronizing in networks in contrast with the fact that spike
death prevents synchrony. In neural networks, collective be-
haviors sensitively depend on the intrinsic dynamics of neu-
rons �30�, and many types of response of neurons to synaptic
coupling may exist �29�. It is interesting to make further
studies on the relations among different responses and their
effects on the collective behaviors of networks.

The variability of the strength of synapses was not in-
volved in the present investigation. The synaptic strength is
often affected by the activity of neurons through synaptic
plasticity �31� and synaptic adaptation �32�. The effect of
changes of synaptic strength will be studied elsewhere.

As mentioned above, the phenomenon that a low efficacy
of synapses favors the generation of neuronal synchroniza-

tion underlying seizure was obtained in experiments and nu-
merical simulations �18,19�. Here we equated the strength
and especially the characteristic time of synapses to the syn-
aptic efficacy and studied the mechanism by which synapses
influence firing synchronization. The mechanism of the in-
fluence may have potential values for understanding the way
the realistic neural system works.
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